United States Patent

US009274790B2

(12) 10y Patent No.: US 9,274,790 B2
Marimuthu et al. (45) Date of Patent: Mar. 1, 2016
(54) CUSTOMIZATION MANAGER 7,225,426 B2* 5/2007 Frank ..o G0761F7§§1/3411
(71) Applicant: ORACLE INTERNATIONAL 7,333,907 B2* 22008 Delenstarr Goer 1920
CORPORATION, Redwood Shores, 7,546,314 B1* 6/2009 Lakner GOGF 8/67
CA (US) 717/122
7,644,392 B2* 1/2010 Geipel ..ccoovvvvvvrnan. GOGF 8/71
. . : 717/121
(72) Inventors: Plll'\?l.)lrlrakar;nTl\lffarlmutChﬁl, Chennﬁl 7752.637 B2 72010 Gunduc et al.
(IN); Tony P. Thomas, Changanacherry 8,122,377 B2 2/2012 Jindal et al.
(IN) 8,196,132 B2* 6/2012 EIEO0 vvveccriirrrrrrreeen, GO6F 3/011
717/121
(73) Assignee: Oracle International Corporation, 8,209,675 B2 6/2012 Zhao et al.
Redwood Shores, CA (US) 8,296,733 B2* 10/2012 Phillipsc....... GO5B 19/056
’ 717/122
. .
(*) Notice: Subject to any disclaimer, the term of this 8,387,010 B2* 2/2013 Hashimofo ... G076 11:751/38
patent is extended or adjusted under 35 8,397,209 B2* 3/2013 Kirby, Jt. w.ccooerrrrrrnnnn. GO6F 8/10
U.S.C. 154(b) by O days. 717/120
8,418,131 B2* 4/2013 Emmelmann GOGF 8/315
(21) Appl. No.: 14/266,460 717122
) (Continued)
(22) Filed: Apr. 30,2014 OTHER PUBLICATIONS

(65)

(1)
(52)

(58)

(56)

Prior Publication Data

US 2015/0317154 Al Now. 5, 2015

Int. CL.

GO6F 9/44 (2006.01)

U.S. CL

CPC e GO6F 8/71 (2013.01)
Field of Classification Search

None

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

4,912,637 A * 3/1990 Sheedy et al.
5,581,755 A * 12/1996 Koerber et al.

5,845,128 A * 12/1998 Nobleetal.c.c.c...... 717/170
6,367,077 B1* 4/2002 Brodersen etal. 717/170
6,553,563 B2* 4/2003 Ambroseetal. 717/116
7,000,223 B1* 2/2006 Knutson GO6T 11/60
717/121
7,174,540 B2* 2/2007 Ondrusek GO6F 8/71
717/121
7,185,343 BL1* 2/2007 Quastc.cocoevvrnnenenn GOG6F 8/30
717/120

Eibl, The KDiff3 Handbook; 2001, published on line; <retrieved on
Apr. 30, 2015> Retrieved from the Internet <URL: https://docs.kde.
org/development/en/extragear-utils/kdiff3/kdiff3.pdf>; pp. 1-45.*

(Continued)

Primary Examiner — Xi D Chen
(74) Attorney, Agent, or Firm — Omkar K. Suryadevara;
Silicon Valley Patent Group LLP

(57) ABSTRACT

A customization includes a name of a module of source code
in an existing generic version of application software, a spe-
cific position within the module, and a name of a file which
contains additional software. An existing customized version
of the application software is then prepared, to execute the
additional software in executing the existing generic version
at the existing specific position. When a new generic version
of the application software is received, the existing customi-
zation 1s displayed if applicable to a module in the new
generic version, followed optionally by receipt of an update to
the existing specific position. On indication of user approval,
a new customized version of the application software is pre-
pared, to execute the additional software in executing the
module in the new generic version, at the existing specific
position or at an updated specific position, which depends on
the optional receipt of the update.

18 Claims, 15 Drawing Sheets

e Customization Manager

i}

Qe or mare
Cumputers

US 9,274,790 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,578,359 B2* 11/2013 Meller GOG6F 8/665
717/122
8,635,597 B2* 1/2014 Drebinger GOSB 19/054
717/120
8,689,184 B2* 4/2014 Storer GO6F 8/20
717/120

2007/0067338 Al
2008/0134136 Al 6/2008 Petersen
2013/0036400 Al* 2/2013 Baketal. 717/101

OTHER PUBLICATIONS

3/2007 Koizumi et al.

MacKenzie, et al., Comparing and Merging Files>; 1993, Software
Foundation, Inc.; <retrieved on Apr. 30, 2015> Retrieved from the
Internet <URL: https://docs.freebsd.org/info/diff/diff.pdf>; pp.
1-70.*

Hayashi, Saeki, “Ecording Finer-Grained Software Evolution with
IDE: An Annotation-Based Approach”; 2010 ACM,; [retrievedon Oct.
20, 2015]; Retrieved from Internet <URL:http://dl.acm.org/citation.
cfm?id=1862372.1862378>; pp. 8-12.*

Cheng, et al., “Weaving a Social Fabric into Existing Software”;
2005, ACM;][retrievedon Oct. 20, 2015]; Retrieved from Internet
<URL:http://dl.acm.org/citation.cfm?id=1052898.1052911>; pp.
147-158.*

Jalili, et al., “AECM: an Aspect Enabled Component Model”, 2005
IEEE; [retrievedon Oct. 20, 2015]; Retrieved from Internet
<URL:http://ieecexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
1607216>; pp. 1-6.*

Rasche, Schult, “Dynamic Updates of Graphical Component™; 2007,
Conference of Communication in Distributed System; [retrieved on
Oct. 20, 2015]; Retrieved from Internet <http://ieeexplore.ieee.org/
stamp/stamp .jsp?tp=&arnumber=5755496>; pp. 1-12.*
Customization—salesforce.com, http://www.salesforce.com/plat-
form/customization/ Nov. 27, 2013.

NetSuite Business Management Cloud-Based Accounting, CRM,
ERP & Financials http://www.bmicloud.com/solutions/netsuite-
cloud-based-accounting-crm-and-erp . . . Nov. 29, 2013.

Supplier Relationship Management (SAP SRM) Extensibility http://
scn.sap.com/community/srm/blog/2013/11/06/extensibility-in-sap-
srm-user-interface-addon-10 Nov. 27, 2013.

ERP 2.50:Developers Guide/How to Create and Package a Module
http://wiki.openbravo.com/wiki/ERP_ 2.50:Developers_ Guide/
How_ To_ Create_and_ Package a Module#Objective Dec. 2,
2013.

RPC supports ERP Channel Partners with Eclipse http://www.
eclipse.org/community/casestudies/rpc.pdf Belived to be prior to
Dec. 3,2013.

ERP Software http://www.tuppas.com/erp-software/erp-software.
htm Nov. 27, 2013.

Use a Pace—Layered Application Strategy to Clean Up ERP During
Upgrades and Consolidation http://www.pega.com/sites/default/
files/docs/resources Feb. 8, 2012.

Application enhancement tool http://help.sap.com/downloads/pdf/
saphelp_crm70_en_ 01_320bd270e84f419953906fe8050ed1__
frameset.pdf Nov. 27, 2013.

* cited by examiner

U.S. Patent Mar. 1, 2016 Sheet 1 of 15 US 9,274,790 B2

__________________________________ ‘ : One or more 9gq y
¢ Customer A ™ | _Computers
i ¢ Madulss of Application

i Seftware customized 1o

Cutput of executing Application Software § exacyte Additiapal

— e T H oftware(s),
; madified to execute Additioral Software Ai / as per Customization(s) A

1143~ A
Custonlif\aiicn(S) : » Customization
, :‘ Manager
i2ad ! /
........................... Adtiitional / '
Software(s) A ; 1026/
(saurce code)

naar

Madules of
Agpi!ca';ion /
cftware

(generic) \
/! i /

Customization
Manager N

Cloud(s)
(owned by Customer{s) or
Vendor or Third Party)

Application Software
, generic)

102/

Customiéa’(ion(s)

ame"
mrmsarvesmresmmEavRaammay cmman=
O i d R et
Teo T amvemvuNmena
CrAtemamrvwamavvsasrsaNvaanETa

HIRTE i H Customization
; 1B H Additional | # Manager
i £ Sottware(s) B |-+ I
i 3 H {source coda) ‘,‘ i
i 1138/
q hY Medules of Application Software
H H) L] |customized to executs Additional
; ig Output of executing Application Software . Software(s) B
' i modified to execute Additonal Soflware B! as per Customization(s) B
110 / ;
........................... "8~ One or more -
! Computers &= .
i s/ 7

L2 -
e -
AL T TN, e’

U.S. Patent Mar. 1, 2016 Sheet 2 of 15 US 9,274,790 B2

...............

-~

FIG -I B e Cloud(s)
M, 1L SN (owned by Customer(s) or
"""""""""" ;) Vendor or Third Party) kY
Customer 5 i
B H ne or more .
: ; PROCESSOR(S i
g ”2\ : I::)_]_”% Computers |+
j : A 106 200 “.
24 Customizat on g Y (/} H
: MEMORY H
= \ /—- 103 oo H
Asdotm%l;g ﬁ—bi Customizaticn Manager W g
(souree cote) r '
- J H Customized :
_________________________ 13 i Application Software .:
: 106 H
' Customized :
) ompanent {
! (source code) ~4-1041 :‘
: Module | :
: i !
:) 1044 :
1 102! H
5 10418 1041) H
: Customized T et ',
W= generic : Mogule e :
o ane] O H A H
Application Software| 3 (souree H
. — eorie) :
AR e e B
w s | | e s
H ¢ {at user- 1 ¢
i i specified | (source :
Component : s position L) § Gode) ;
!] =g) H
) pndil 104 4 ¢
fedule E 4 peotess =Y. :
11 i M0 IE i Cornpiler ; :
7 : Module Lapgusacas 4 !
‘ 10211 { |d[e A0217]_j :
Module ; 13 :
! ! 3 > 1% Y :
1624 1 Executable (of Customized Application) H
R Customized :
- '; Compﬁ)nent Compiunent Componerit :
i | H {compiled (com&)i!ec! {compiled H
T, ! | code) L o) co 9)\‘ :
1057 H f 7 ! :
: 7] i
; ; Compenent : 1-05/3/ 105 105N v ;
i1 gl i { ; - i
i ‘:02!}" _ ; 190 =+ Database(s) i
: ; {Component Name, Module Name, Specific Position :
Man : in Moduie, Identifier of Additional Software) H
1037 % 13 iAr]ditinnal Software : E

...............

U.S. Patent

FIG. 2

Mar. 1, 2016

Sheet 3 of 15

US 9,274,790 B2

103~

| Customization Manager

/-231

Receive, via a 1% field in a GUI scree,
a name of a component of an application

v

222

Receive, via a 27 field in the GUI screen,

L

.‘

/235 v

A 4

2 name of a module in the component

!

Receive, via a 3 field in the GUl screen,
a specific position relative to module
(¢.g. beginning of module, cnd of module, or
a specific line number within the module)

v

234
P

Receive, via a 4% field in the GUI screen,
at least a name of a file containing source code
of software to be added (“additional software™)

s S~ j
Y s customization activated?

[nsert additional software in source cods

spacific pusition indicated by user input

form inte source code of module (at

in step 233) to obtain a customized
modute and Optionally display
customized moduie

236
any more |
nodules o customize?

~

......
.....

no

200

One or more
Computers

no v

.

Compile at least the customized module(s) to obtain an
executable and store the executable in non-transitory memory

A4

Execute the executable ¢
(including the customized madule)

239

US 9,274,790 B2

Sheet 4 of 15

Mar. 1, 2016

U.S. Patent

Ve I

v

¥50¢
:mw\émm? puz

.m PO PazZILIOISND) 26;90_./ v DI.. 908

Ve Vi0e
SuuuBeg %I e uasuy /.d Di.ﬁom

10109{88 USHISOd 9p00

azoe alemyjos feuaninpy

SZIWBTENTS 0T 3INPON

we1]] 110 1o el

TSN B

SUGIEZIWLI0}SH)

Al 124510

A 2aoeu)

I

STEIS

uonewioju) s,eakoidw3; *pA |3 1140Hd IFAOTIWR 08

uauodwon 1o uondiosag

9zZIWoIsNg o} weuodwaon

S P

e,
o > Pon v

|\ JaBRURY UONEZILOISNY

e

1

Ve o e

veol

£ee

US 9,274,790 B2

Sheet 5 of 15

Mar. 1, 2016

U.S. Patent

d¢ 9l

—

60¢
N - w_:nos_ paziwolsny 3@591 % _ _
AN vage f 439031 WHINIOFV |
cmmémm? oug [] sunuteg [] e osib wu_mgwummmﬁ%@nuqm_ ﬁ
J0108{8g UOISC 8po JT1EVAYd mm.zzoooq A ﬁlo_om
e _— STHINT TYNHOO fed
\..l.uﬁ_ [« 11011 pfisnyl Jt maipfpuiy] wEonmm‘mmzmaxm.u\
¢ ¢ ; -
i a[own] (Al | uogewiopu| seekoidwa; | A3140Hd 3TACTINT 00
1IEN SMBES lusuodwon 10 uojduossg ﬂ 2ZIWCISNY 0} jusuoduio)
3 el \ _— | 1obeURY UONEZILGISN]
-) z {
he o ashi 0t

US 9,274,790 B2

Sheet 6 of 15

Mar. 1, 2016

U.S. Patent

Je

914

V6ot

mmmsuoz PEZILOISN]) MEIABIH |

B uumodiouers

- ¥90¢

08

—~10€

W40¢ Yroe o azoe STER0G [EU0NIPPY
uesMIaY L} pu3 Buunbag .%\um yesy /.d
10108185 UOISO 8poD SZIWDISH O] ZINDORH
set| [10 1) Pefasay] {1 maippud] SUQHeZIWO)SNY
o] Aol | uoewuoju] s,0040/dwai *pA |3 I40Hd IIAOTANT
e wEEm/ wauodwo) o uonduoseq ozIWoelsny o} juauodwon
X | o | =1 - JsoBeuey) uoneziwelsny
Z
7
le 9801

US 9,274,790 B2

Sheet 7 of 15

Mar. 1, 2016

U.S. Patent

J10E

usamag uf D pu3 BuBeg D e Pesuj

10108198 UOHISO4 8pO7)

mm_:nos_ pezZILIOISHY) \smSmiw./

HupmoEepUg

BTEMIOS {eU0HIPY
240

{anpoy pazuiolsno .smSmim./

- 90C

0C0¢

- 990¢

-320¢

- Y508

/208

=
(ep)

g90¢ g50¢ BIEMII0S JeUnInyY
Q£0¢ a/0¢
[1asquing sun ugomisy uf pusg D BuuBeg _H.ﬂlum Hosuy
J0J08I9S HOWISO4 9p0D) SZIUIBISATY O] SiNpoR
v60E ; :
/ {ainpol paziwalsny BmSmEm‘/ © E =
Yaie wyoe IEMOS {RUDTIIDY
VEOE Y08
usemay uf pu3g BuuuiBeg _%Ium posuy
4018|385 UONISod 8pos)
S T [ol s 11 maip Jpuis— {7¢ SUGHeZIW0ISnY
Al won | [aley] uonewUo §,88A0/dw3] >_m_;:u_Omasm_m>O;_n_Em
1ayien w:ﬂmwm/ wauodwon 0 uoiduoaseq 8ziwaelsng o Jusuodwon
Y el \ _— \ 1abewely Lol BZILI0ISNY
. ¥ i 1
[
he asht £ct

US 9,274,790 B2

Sheet 8 of 15

Mar. 1, 2016

U.S. Patent

3¢ "9l

0t
ra
\ {0 ‘wsyigngug) abessapuipm hii
{1201 104 = alweudiBiu assuym dnolbiu wolj (SWeuusHgNS)xet 159}38,) 39X370S [
H usyl 7, <> SISIXGSR §f 8

17t o

/s s 2404 Spuo JoDeusyy UONBZILOISY A POLIGSUL APCY WIOISNY L0 o/ ™

Yus fqognaslgpeiealn =
'sse|004ds® | . | 100uBNdsR = 1S lgog

slaym SN sd waas jsnn wes sd woly yped ssepdde Soosmbewoed 199195, J0sxI10S
sseinindse 100dddsy Auns |20
/5 s 218U SLiB}S J6BUiRYy UOIIBZIUIOISNG £ DBLIASUL OPOY UIOISY 4pr 1/ _J

ue] (sselaBtdss) iy el

A puy (onyBudsg} iy i

G
BNEAINYNISDING JTING £SND 1003 == SNIBA INYNYT TN TIDIUgIaRg iz ¢
{dNOUDINGSH Plovsy)pioseysieal) = dIDjugIary 4G
{0 ‘waygngugy slessspjuim 0
1503 b = sweudibjud siaym dnosBjudsd wolj (WnUtalgnS) el 158}8s,) 03537108 €0
_ uslf] X, <> SISIX38¢ §§ o0
L3 g =
X il |/ (uimod "IH0Hd IIA0TNT) Ainpoly paziuialsn) maladld
y
301

w2

US 9,274,790 B2

Sheet 9 of 15

Mar. 1, 2016

U.S. Patent

4¢ 91

0L
(ﬁ (0 ‘waygnsug) sbessspum ol
[1€01 194 = aweudiBu iaym dnoiBji LIoL) (ALLULBHGNS)XeW 193}38,) 28XT TS 40
usYL 7, <> SISIXZST Ji 20
10
BMEAINYNADING dD TN LSNDT 1003 = 3R[BAINYNJYD IN LIDiug0e1g 90
{ANOYYINGSd ploaegIplodeysiessy = digjudnasy G
{0 ‘Waygngug) sBesSIUIM 0

1174 S

L

s D401 SPUB JaDZLBY UONBZILDISNY AG POLIBSUE 800 WOISNY o/ ™™
Hl-ou3
(™ geg)islnpsiesly = fgow
5521004488 | .y | J00YBNdSS = 45 Tgen
usy} (sse[)0udsg) iy
puy (ooybndsed i §

gaaym 1snd sd quans s 1008 sd wioyy yped ssepdde Joousbenoed 108)8s,)08%3 108

‘aseindsy Jeouingsy Huis jpaoy

e st I8 SLIRYS IODRURYY LONEZIUOISNY A POLIBSUE BPOD WOEND Ly 5/ _J
103 4 = swendibud alaym dnosBudsd woup {WInUWANGRS)XeY 199i85,,) 2XTT0S

UBUL X, <> SISIXIY H

£0
0

X [a1/ Quimod F1H0Hd_IIAOTAING) SINPojy paziwiojsng malasid

mMo {

P

US 9,274,790 B2

Sheet 10 of 15

Mar. 1, 2016

i

9¢ "9l

usemieg ui [| pu3

BuwuBeg [[] e wesyl
IDl09{B8S OISO 2pen

22WIBIETTY O S[IDOW

wm_:uo_a PRZIWOISNT) MBS /

10108188 UOISOd 8pon

LOUITENULMOY

9608 sinpopy peziwioisng meneld! o[umwogopuah] 380¢
e JIEMAI08 [EUCTIIDY

/ 2406 "

= AT

2z BTSN OF BIPOR]

H60E SIEMI0S [EUONTDY
st N gg 80
usguon eur) ueemied ul [N pug [] Bumwibeg ﬁﬂ»xm vasuy v é 1708

V60 ; n
/ W NPOW PIZIWOISNT Maircld m lUMoYouRS L (mmm
Y50¢ Yr0e ./ BIEMII0C [EU0NIpY
veoe V08
usamiag W pug Buuuibeg %um Uasy V705
i0109[85 UOIIS0J BPOD ¢
Nwm/ st [cjoe1 syl | EEM XA SUO{JeZILIDISTY)

U.S. Patent

o

~alEn] (Al sy uopewsoyu 5,9040/dw3! *pA |30 IIAO TN —Fi0e
En wESw/ weuoduwion jo uonduosag 8Z|WoIsNy 0} Jusuocdwan

% | g | b | o 1abeuep) UoREZIWIOISHY

£

LiS 4601

U.S. Patent Mar. 1, 2016 Sheet 11 of 15 US 9,274,790 B2

One or more |}

Previgusly- *
Gi stgﬁfggitlon
applicanle 1o Computgorg

NEW generic

application
sortware
Retrieve Previousl
Update to Ty "
gqg/cr : "" Custamization Manager applied Omtomzatlon
Approval o 106
Pfg;ﬁﬂijy (I { Existing Custom:zed Application Software
Gustomization New Custornized Application Software
I 1 8-/ Customized 116
N e, Comperent | :
e e {source code) :
........... i Mogule
n ;
Exsst s} utei Yeric } ! i
ication H :
102.// pp Ware ;
New Generic i CJT\%O ngd Comppnent
Apphcaton ; -
117 - ggitwam — (:égggu)e
e Agdoc%’ti,oa?il i Componant
{at user- N
specitied_ | (sogrce
Component : pasitien L)- code)
! boreormcnenad *
fadule — 11 1 ’
o g Compxle i
121 Modutle | | tepgreeses
1124 i j
Module 115
U | g v
1121 New Executahie of Customized Application
: - Gustomized -
-------------------------- . Wodule i Componsmt Component Component
Vendor i (comdpiled {co Opy ied | | (compiled]
01 12127 i code) code)
100 i i
ot Component ;:
. Editor s :-' » N;
;‘Cé?ﬁ"fér' J H2Ns | Databasa(s)
] : (Component Neme Modute Name, Spec fic Powtsow
: . Atf - of Additi

U.S. Patent Mar. 1, 2016 Sheet 12 of 15 US 9,274,790 B2

FIG. 4B

103y One or more Computers 200

N\ Customization Manager),400

401 -—-} Receive a new generic version of application software ::

¥

Use database to identify by name each compenent that has previeusly-
e applied customization(s); Within each identified component, identify jm-gpyo
W each module by name that has previously-applied customization(s);
Within each module, identify a specific position at which additional

software is to be executed when executing a customized version

120 i

403 =1 Display previously-apglied customizations of identified modules
(2) Display customizations at beginning & end of each module
(b) Display custamizations at specific position in each module
»l Fof each customization, display a name of a module and the
v specific position (e.g. beginning, end, or at a specific line
number in between) at which additional software is to be
executed in a current version of customized module

v

; "] Update customization as per user input, e.g. change specific positionl]

Prepare a new customized version of the application
4048 software that is to execute the additional software when
| executing a new version of an identified moduie at the
™1 specific position, e.g. insert the additional software or a
call thereto, at the specific position (s.g. beginning, end, or
AQ5A Ia line number) in a new version of the idenlified module 404A

|

—406A

.
3
1

\
404

/
405

yes any more

odules to customizel

yas any more

modules to display?

403A
- - ¥
Compile at least the customized module(s) to obtain a new
108 — executable and store it in non-transitory memory
\d
239 Execule the new executable

(including rewly customized modules)

U.S. Patent Mar. 1, 2016 Sheet 13 of 15
411E 411F
1A rmB\ 41101 zmoﬁ
Previously-applied {Customization (at|a modute boundary) / / / /
Component Evenl ' Module © Beginning {End | Preview Codd
CA_HDR_PNG SaveEdit ValidateFields] g Preview Code
CA_PRICING_PNG SavePreChange Updateinterfaca m [Previgw Code
RS _S0_HDR Rowinit HideFields £ Preview Code
EX_SHEET HDR PostBuild FilterDala Preview Code
Gi_JRNL_HDR WaorkFlow SendMailRouting il [Praview Code
i Re-ApPplY ~ | i Cancel |
\\
m/ A FIG 4C a1
43C
412)
H13Ay)
-
Previously-applied Customization | (within module)
- Component: EX_EE_PROFILE Module: Gli’av Page &13F
4138 LFve;\lt: be SaveP;fﬂini 413E\E_t§y_i§_w_9_@.dg
ine Number:
413D
Component: CA_HDR_PNG Module: Hello World
Event: Rowlnit Preview Code
Line Number: 14 -
l Re-Apply I
[Fehoply for A,]

/

414

FIG. 4D

US 9,274,790 B2

U.S. Patent Mar. 1, 2016 Sheet 14 of 15 US 9,274,790 B2

1112
e e

] MAIN MEMORY] , ROM] [storna oevice |
; r\os 16 ! E
ma\\ iy ~ 4 1110
INPUT :) I :
DEVICE o :
: I 1109
HERN commoncaTion . /|
X : INTERFACE :
CURSOR i :
CONTROL
LOCAL
NETWORK
(mz
T Application Software (ERP) *
11 Employee Expense Customization {
i1 Profile Reports J"‘f“‘a} Manager ‘
{ | Component o Eniries (internal} H
; amponent Component :
"""" $$£\wm$
1120
RDEMS
? MAIN MEMORY
zoo/

Relational Database I

Fie System

U.S. Patent Mar. 1, 2016 Sheet 15 of 15 US 9,274,790 B2

... 102

: Application Software (ERP) @

' 102A : 103
P 102 : ey

¢+ | Employee Expense : Customization

: Profi¥e Reports {:_O‘f,”a’ : Manager

+ | Companent c ntries : (external)

: omporent Component §

=
N
=

1130

MAIN MEMORY

200

Relational Database

File System

US 9,274,790 B2

1
CUSTOMIZATION MANAGER

FIELD

This patent application relates to apparatuses, methods and
non-transitory computer-readable storage media that custom-
ize original software delivered by a vendor to a customer, and
then execute modified software which is obtained by customi-
zation.

BACKGROUND

Most software delivered by a software vendor typically
meets the needs of a customer. Some customers have their
own requirements, which are unique to their business. Hence,
software delivered by a vendor may be customized, to fit a
customer’s specific needs. However, customization of a ven-
dor’s software acts as a barrier to upgrading, applying patches
or maintaining software by the vendor. This is because a bug
fix or patch provided by the vendor is typically based on an
initial version which the vendor supplied to the customer, not
accounting for any customization of the vendor-supplied soft-
ware at a customer’s premises. If a customer applies a patch
or fix from the vendor, one or more customizations of the
initial version which are made by the customer may get over-
written by a new version from the vendor. This makes apply-
ing patches or fixes or even upgrading to a latest version
difficult for customers.

When customized software is to be upgraded by a fix
supplied by a vendor, manual effort is required at the custom-
er’s premises, to maintain previously applied customiza-
tion(s). Specifically, during the upgrade process, a customer
needs to manually review and identify all vendor-supplied
modules where any customization has been applied. Then, the
customer has to make a copy of any custom code they added
to the vendor-supplied modules, and then apply the fix or
patch delivered by the vendor. After the fix or patch is applied,
the customer must use the custom code copy to re-apply their
customizations to new versions of the vendor-supplied mod-
ules.

Due to the time and cost involved in the upgrade process,
many customers refrain from upgrading an initial version of
vendor-supplied modules, by not applying patches, fixes,
maintenance packages, upgrade codes etc. This traps the cus-
tomer into staying with an old version of the vendor-supplied
software, losing benefits of new features and enhancements,
even though a latest and powerful version is available in the
market. The inventors of the current patent application
believe that there is a need for apparatuses, methods and
non-transitory computer-readable storage media of the type
described below, to improve the process of applying customi-
zations to vendor-supplied software, as described below.

SUMMARY

In several described embodiments, one or more computers
store in a database, a customization which indicates how
application software is to be customized. Specifically, the
customization includes a name of a module of source code in
a generic version of application software, a specific position
within the module, and a name of a file which contains addi-
tional software. Depending on the embodiment, such a cus-
tomization may additionally include other information, such
as aname of'a component ofthe application software to which
the module being customized belongs, and one or more geo-
graphic locale(s) in which the customization is applicable.

10

15

20

25

30

35

40

45

50

55

60

65

2

The customization may be received in the form of input from
ahuman user, via fields in one or more screens of a graphical
user interface (GUI).

In many of the described embodiments, one or more com-
puters additionally receive application software from a ven-
dor in a form (also called “generic version™) that is commonly
supplied to several customers. After receipt of a generic ver-
sion of the application software, the one or more computers
apply one or more customization(s) of the type described in
the previous paragraph above, specifically by preparing and
storing in one or more non-transitory computer-readable stor-
age media, a customized version of the application software.
The customized version of the application software executes
the above-described additional software (at the specific posi-
tion identified in the customization), whenever the generic
version of the application software is executed.

A customized version of the application software may be
prepared by insertion of the additional software directly into
the application software, or by insertion of a function call that
invokes execution of the additional software, depending on
the embodiment. The additional software(s) identified by cus-
tomization(s) and the application software may both be in the
form of source code in some embodiments, in which case the
customized version of the application software is compiled,
to obtain one or more executable(s), which are then executed
in the normal manner thereby executing the existing custom-
ized version. In other embodiments, the additional soft-
ware(s) and the application software may both be in the form
of object code, in which case no compilation is needed after
customization, to execute a customized application software.

The above-described customization(s) are stored in a data-
base in non-transitory computer-readable storage media,
after one generic version of the application software (“exist-
ing generic application software™) has been customized, for
future use when a new generic version of the application
software is received. Hence, customizations that were previ-
ously applied to prepare an existing customized version of the
application software are retrieved from the database after
receipt of a new version of the generic application software.
Depending on the embodiment, a customer’s computer(s)
may issue a database query (e.g. in SQL) based on module
names in a new generic version of application software being
identical to corresponding module names in previously-ap-
plied customizations (which include module names of the
existing generic version). The retrieved customizations are
identified in a screen prepared for display to a human user,
followed optionally by updating the customizations based on
user input. Then, the retrieved customizations which are
approved by user input (with or without update) are applied to
the new generic version of application software, e.g. by
inserting additional source code(s) (directly or indirectly via
afunction call) into the module(s) of the new generic version,
to obtain a new customized version that executes the addi-
tional software when executing the new generic version. In
embodiments wherein the new customized version is in
source code form, it is then compiled to obtain new execut-
able(s), followed by executing the new executable(s) in the
normal manner.

It is to be understood that several other aspects of the
described embodiments will become readily apparent to
those skilled in the art from the description herein, wherein it
is shown and described various aspects by way of illustration.
The drawings and detailed description below are to be
regarded as illustrative in nature and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B show, in data flow diagrams, a computer
of'a vendor that transmits generic application software to one

US 9,274,790 B2

3

ormore computers in a cloud, and computer(s) of customer(s)
transmitting to the cloud computer(s), customization(s)
indicative of when additional software is to be executed in
executing the generic application software, in some illustra-
tive embodiments.

FIG. 2 illustrates, in a flow chart, acts performed by one or
more computers 200 by use of one or more processors pro-
grammed with a sequence of instructions of software stored in
one or more memories, to implement a customization man-
ager, in exemplary embodiments in accordance with the
invention.

FIGS. 3A-3G illustrate screens generated by one or more
computers 200 in performing acts of the type illustrated in
FIG. 2.

FIG. 4A shows, in a data flow diagram vendor’s computer
100 transmitting to customer’s computer(s) 200, one version
of application software 102 (“existing generic application
software”) customized by customizations as described above
in reference to FIGS. 1A and 1B, followed transmission of
another version of application software 112 (“new generic
application software”) customized by previously-applied
customizations that may be approved unchanged or after
being updated by user input, in some illustrative embodi-
ments.

FIG. 4B illustrates, in a flow chart, acts performed by one
or more computers 200 (in addition to the acts of FIG. 2) by
use of one or more processors programmed with a sequence
of instructions of software stored in one or more memories, to
customize a new version of application software based on
previously-applied customizations that may be approved
unchanged or approved after update in exemplary embodi-
ments of a customization manager, in accordance with the
invention.

FIGS. 4C and 4D illustrate screens generated by one or
more computers 200 in performing acts of the type illustrated
in FIG. 4B.

FIG. 5A illustrates, in a block diagram, hardware portions
of one or more computers 200 programmed with software
portions of the type illustrated in FIG. 5B or 5C to perform
one or more acts illustrated in FIGS. 2 and 4B in some
embodiments.

FIGS. 5B and 5C illustrate, in block diagrams of alternative
embodiments, one or more computers 200 of the type shown
in FIG. 5A programmed with software to perform one or
more acts illustrated in FIGS. 2 and 4B, in a customization
manager 102 that is either internal to or external to application
software 102.

DETAILED DESCRIPTION

In accordance with the invention, an employee 101 (FIG.
1A) of a software vendor (e.g. Oracle Corporation or SAP
AQG) prepares in a computer 100, certain software “applica-
tion software’) 102 for use by employees of multiple custom-
ers, e.g. employees 111A and 111B of respective customers A
and B. Application software 102 is “generic” and designed for
use by any number of multiple customers (although only two
customers are shown in FIG. 1A for illustration). Application
software 102 (FIG. 1A) includes logic to perform one or more
business functions in an organization, such as logic used by
each customer to perform Enterprise Resource Planning
(“ERP”), e.g. software to manage each customer’s own cus-
tomers called “Customer Relationship Management
(CRM)”, software to manage each customer’s own suppliers,
called “Supply Chain Management (SCM)” etc.

As shown in FIG. 1A, software vendor’s computer 100
transmits application software 102 to one or more computers

10

15

20

25

30

35

40

45

50

55

60

65

4

(also called “server” computers) 200 that may implement a
“cloud” 300. In cloud 300, one or more computers 200 may be
owned and managed by various entities, e.g. by customer(s),
and/or by the vendor, and/or by a third party, depending on the
embodiment. In some embodiments, vendor’s computer 100
additionally transmits to cloud or server computer(s) 200,
software 103 which is to be used in customizing application
software 102, hereinafter “customization manager.” In some
embodiments, customization manager 103 is transmitted by
vendor’s computer 100 to cloud computer(s) 200 separate
from and independent of transmission of application software
102 as shown in FIG. 1A, although in certain embodiments
customization manager 103 is an integral portion of applica-
tion software 102 and transmitted together as shown in FIG.
1B. In the just-described certain embodiments shown in FIG.
1B, customization manager 103 being an integral portion of
application software 102 makes upgrade of application soft-
ware 102 easy, e.g. by eliminating the need for employee 111
to invoke customization manager 103, and eliminating the
need to login to customization manager 103, etc. In the just-
described certain embodiments shown in FIG. 1B, screens of
customization manager 103 are formatted with look and feel
similar or identical to screens of application software 102 to
provide a seamless experience to employee 111, when cus-
tomizing and upgrading application software 102.

The one or more cloud or server computers 200 addition-
ally receive, from computer(s) 110A and 110B of the respec-
tive customers A and B, additional software(s) 113A and
113B which are to be executed when executing the generic
version of the application software at specific positions
thereof as identified by respective customizations 112A and
112B. Customization manager 103 (FIG. 1A), when executed
by the cloud or server computer(s) 200, prepares a custom-
ized version of application software 102 by insertion of the
additional software directly into the application software, or
by insertion of a function call that invokes execution of the
additional software, depending on the embodiment. For
example, customized application software 102A (FIG. 1A)is
created by insertion of additional software(s) 113A directly
or via a function call into application software 102 at specific
position(s) identified by customization 112A, while custom-
ized application software 102B (FIG. 1A) is created by inser-
tion of additional software(s) 113B directly or via a function
call into application software 102 at specific position(s) iden-
tified by customization 112B.

The customized application softwares 102A and 102B are
thereafter used by employees 111A and 111B of respective
customers A and B via local computers 110A and 110B in the
normal manner, to receive and view display of information in
the form of respective outputs 114A, 114B (FIG. 1A). Execu-
tion of additional software(s) 113A and 113B by cloud or
server computer(s) 200 when executing the generic version of
the application software generates different information as
outputs 114A, 114B which may be displayed in a graphical
user interface (via a browser) on the respective video display
monitors of local computers 110A and 110B used by employ-
ees 111A and 111B. The specific manner in which application
software 102 is customized by computer(s) 200, to generate
the information displayed to one customer’s employee 111 is
described next, in reference to FIG. 1B.

Application software 102 (FIG. 1B) which is supplied
generically by vendor’s computer 100 to multiple customers
includes multiple components A ... 1. .. N in the normal
manner, and each component I include multiple modules,
such as modules I1 ... 1J .. . IZ. Application software 102 is
not componentized in some embodiments, in which case
application software 102 directly includes modules, without

US 9,274,790 B2

5

grouping into components. As noted above, customization
manager 103 is used in computer(s) 200 to receive, store and
use one or more customization(s) 112 (FIG. 1B) that custom-
ize one or more of components 102A ... 102[... 102N. In
some embodiments, customization manager 103 adds the
additional software 113 (FIG. 1B) in source code form (“ad-
ditional source code™), based on each customer’s individual
requirements.

Specifically, in several embodiments, an employee 111 of
a customer prepares additional source code 113 (FIG. 1B) in
their local computer 110, and supplies it to computer(s) 200
with a corresponding customization 112 that specifically
identifies the additional source code 113 and further identifies
a specific position at which it is to be executed in application
software 102. In many embodiments, customization 112 is an
n-tuple (e.g. a 3-tuple or a 4-tuple) that specifies when addi-
tional source code 113 is to be executed in computer(s) 200 in
executing generic application software 102 received by com-
puter(s) 200 from the vendor’s computer 100.

As noted above, in several embodiments, each component
1 in an application software 122 (also called “generic appli-
cation software”) includes several modules, such as modules
I1...1J...1IZ. In such embodiments, a customization 112
uniquely identifies one specific module therein, e.g. module
1J. Depending on the embodiment, in order to uniquely iden-
tify a module 1J, customization 112 may further identify
within generic application software 102 a specific component
I in which module 17 is included. In addition, customization
112 of several embodiments identifies a specific position in
the identified module 1J, at which the additional software 113
is to be executed. A specific position identified by user input
received for customization 112 (either via a keyboard or via a
mouse, as described elsewhere herein) may provide an indi-
cation, for example, (1) at a beginning of module 1J, e.g.
beginning position 1041JB before the very first instruction in
module 1I, or (2) at an end of module 1J, e.g. end position
1041JE after the very last instruction in module 1J, or (3) ata
specific line number [, within module U. The indication of
line number L is after a beginning position 1041JB in module
1J (i.e. after line number 1) and before an ending position
1041JE in module 1J (i.e. before a total number T of lines of
instructions in source code form in module 1J). Thus the line
number L is an indication of a specific position after line
number 1 of the first line in module 1J and before line number
T of'the last line of instructions in source code form in module
11, ie. 1<L<T.

Customization 112 of some embodiments may be imple-
mented as a 3-tuple which includes: (1) a name of module 1J
of source code in application software 102, (2) an indication
of a specific position in the module 1J (e.g. line 7, or a begin-
ning position 1041JB or end position 1041JE), and (3) a name
of a file which contains additional software in source code
form. In one illustrative example, a file which contains addi-
tional software in source code form (“additional source
code”) is named RowlInitatl.ine7 and a 3-tuple form of cus-
tomization 112 is (Rowlnit, Line 7, RowlnitatLine7),
wherein “Rowlnit” uniquely identifies a specific module in
the application software 102.

As noted above, in some embodiments, customization 112
is implemented to include a name of a component I that
includes module U. Hence, when implemented as a 3-tuple,
such a customization 112 includes the module name and the
component name in a single text string, with the two names
being demarcated by a slash (or another such predetermined
character) therebetween, thereby to form a single element of
the 3-tuple. For example, if a module RowInit in the compo-
nent EMPLOYEE_PROFILE is to be customized, a 3-tuple

10

15

20

25

30

35

40

45

50

55

60

65

6

form of customization 112 is (EMPLOYEE_PROFILE/Row-
Init, Line 7, Rowlnitatline7). Many embodiments implement
customization 112 as a 4-tuple in which the module name is
one element of the 4-tuple and the component name is another
element of the 4-tuple, an example of which is: (EMPLOY-
EE_PROFILE, Rowlnit, Line 7, Rowlnitatl.ine7). In some
embodiments, elements of a tuple that implement customiza-
tion 112 may include not only the above-described name(s),
but also paths, e.g. an element of such a tuple that includes a
file name RowlnitatLine7 to identify the additional source
code may include therein a directory or folder, and a path
thereto which is local or remote (e.g. URL), as apparent in
view of this description.

In several embodiments, the “n” elements of a tuple in a
customization 112 are received as user input by computer(s)
200 via corresponding “n” or more fields in a graphical user
interface (GUI) screen. Such a GUI screen is implemented in
some embodiments in the form of a web page prepared by
customization manager 103 in computer(s) 200 and displayed
to customer’s employee 111 by a browser in computer 110.
Hence, in an act 231 (FIG. 2), customization manager 103 of
some embodiments receives, via a field in the GUI screen, a
name of a component, e.g. component 1. And, in an act 232,
customization manager 103 receives, via another field in the
GUI screen, a name of a module, e.g. module 1J in the com-
ponent I (as noted above, component | was specified by user
input received in act 231). In an act 233, customization man-
ager 103 receives, via still another field in the GUI screen, an
indication of a specific position in the module 1J, e.g. begin-
ning position 1041JB, in-between position at line number L or
end position 1041JE (as noted above, module 1J was specified
by user input received in act 232). Moreover, in an act 234,
customization manager 103 receives, via yet another field in
the GUI screen, at least a name of a file containing the addi-
tional source code 113 (to be added to module 1J).

At the end of act 234, several embodiments of customiza-
tion manager 103 stores in a database 120, the information
received as user input in acts 231-234 as being associated
with one another, namely as a customization 112 in database
120. Customization 112 is stored in a predetermined data
structure in database 120, e.g. when database 120 is imple-
mented as a hierarchical database in some embodiments,
while in other embodiments customization 112 is stored in a
row of a table in database 120, with one column for each
element of the n-tuple in customization 112, e.g. when data-
base 120 is implemented as a relational database which is
accessible by executing software of a relational database
management system (RDBMS), such as Oracle 11gR2 avail-
able from Oracle Corporation of Redwood Shores, Calif.

After act 234, in an act 234 A, customization manager 103
checks if the customization 112 is activated by user input.
Depending on the embodiment, customizations may be acti-
vated by user input, individually for a specific customization
or in a group of multiple customizations. Group activation of
customizations may be supported, for example, at a module
level, or at a component level, depending on the embodiment.
Certain embodiments support activation of customizations at
acomponent level e.g. via user input in status field 311 shown
in FIGS. 3A and 3C, as follows.

In one illustrative example, user input in a field 311 (FIG.
3A) indicates that customizations of a specific component,
suchas “EMPLOYEE_PROFILE” are inactive, in which case
branch 234B is taken to act 236 (described below). As another
example, user input in field 311 (FIG. 3C) may indicate that
customizations of a specific component, such as “EMPLOY-
EE_PROFILE” are active, in which case branch the customi-
zation manager goes from act 234A to act 235 (described

US 9,274,790 B2

7

below). Selective activation or inactivation based on user
input as just described enables a customer to easily and
quickly respond to changes in requirements by the customer’s
business (e.g. a previously-applied customization may no
longer be needed, or vice versa). More specifically, user input
indicating a customization as inactive returns operation of
application software to the original version 102 (i.e. a version
transmitted by vendor’s computer 100).

In act 235, customization manager 103 prepares a custom-
ized component 1041 (which therefore results in a custom-
ized version of application software 106) in any manner
appropriate, to execute the additional software (specified by
user input received in act 234) when executing a new version
of'the module 1J (specified by user input received in act 232),
at the specific position (specified by user input received in act
233). The manner in which a customized version of applica-
tion software 106 (FIG. 1B) is prepared can be different,
depending on the embodiment, as follows.

In several embodiments, customization manager 103
inserts additional software 113 directly in an in-line manner at
the specific position in application software 102 (thereby to
obtain customized version 106), e.g. as shown by additional
software 113 which has been inserted in-line, between lines 7
and 8 of module 1021J as shown in FIG. 3E. In certain other
embodiments, customization manager 103 inserts a function
call (not shown) at the specific position in application soft-
ware 102 (thereby to obtain customized version 106), and it is
the inserted function call that in turn invokes execution of
additional software 113 when executing the new version of
module IJ.

In some embodiments, additional software 113 is inserted
into a new version of the module 1J (e.g. between lines 7 and
8 as shown in FIG. 3E), while in alternative embodiments
additional software 113 may be inserted into a different mod-
ule which may be selected based on always preceding or
always following module 1J in situations wherein the specific
position happens to be at the beginning or at the end of module
1J. In these alternative embodiments, insertion at the begin-
ning of module 1J is equivalent to insertion at the very end of
a preceding module 1J-1 (in situations wherein execution of
module 1J always follows execution of preceding module
1J-1) and similarly insertion at the beginning of the module 1J
is equivalent to insertion at the very end of a following module
1J+1 (in situations wherein execution of module 1J is always
followed by execution of the following module 1J+1).

In view of the description in the preceding paragraph, it is
readily apparent that customization manager 103 may pre-
pare customized application software 106 that is to execute
the additional software 113 in any manner (e.g. by insertion of
the additional software 113 directly in an in-line manner into
any of modules 1J-1, 1J, 1J+1, or e.g. by insertion of the
additional software 113 indirectly as a function call to invoke
execution of the additional software 113), when executing
application software 102 at the user-specified position (e.g.
beginning position 1041JB, in-between position at line num-
ber L or end position 1041JE).

At this stage, computer(s) 200 may optionally display the
source code of customized module 1041) (FIG. 1), e.g. viaa
browser that renders web pages on a video monitor 1112 of
computer 110 for review and approval by an employee 111 of
the customer, e.g. in response to user input requesting the
display. In many embodiments, the source code of module
1021J which is received as a portion of component 1021 in
generic application software 102 supplied by the software
vendor, and the additional source code 113 which is received
from the customer’s employee 111 are both expressed in a
common high-level programming language. Thus, the cus-

20

25

30

35

40

45

50

55

60

65

8

tomer’s employee 111 may review and understand custom-
ized module 1041) after it’s been customized by insertion of
additional source code 113 into module 1021J.

When there is only one customization in database 120,
customized component 1041 includes, in addition to custom-
ized module 1041) (FIG. 1), one or more modules 11, 17 that
are unchanged (when there is no applicable customization
thereto). When there are multiple customizations of a com-
ponent 1021, a corresponding customized component 1041
obtained by modification thereof includes one or more cus-
tomized modules and any modules that remain unchanged
(again, if there is no applicable customization thereto). Also,
when multiple components are customized, customized
application software 106 includes all corresponding custom-
ized components obtained by modification thereof, and fur-
ther includes any components that remain unchanged.

In several embodiments, computer(s) 200 include a com-
piler 115 that can compile source code expressed in the com-
mon high-level programming language described above. In
such embodiments, compiler 115 may be transmitted by ven-
dor’s computer 100 to computer(s) 200 for use therein to
compile the customized components. A common high-level
programming language of compiler 115 can be, for example,
the language PeopleCode which is an object-oriented lan-
guage for writing software to implement business logic in one
or more computers, for PeopleSoft applications. Thus, in an
act 238 (FIG. 2), customization manager 103 compiles at
least one customized module 1041J, by using thereon com-
piler 115, to obtain compiled code of a customized compo-
nent 1051 in an executable application 105, followed by
storing the executable application 105 in a non-transitory
computer-readable storage media, such as memory 1106 (e.g.
implemented as a RAM or a ROM, depending on the embodi-
ment).

After act 235, customization manager 103 of some
embodiments perform an optional act 236 to check if any
more modules are to be customized and if so return to act 232
(described above). Moreover, after act 236, customization
manager 103 of some embodiments is programmed with an
optional act 237 to check if any more components are to be
customized and if so return to act 231 (described above). An
executable application 105 (FIG. 1B) created by customiza-
tion manager 103 in act 238 is thereafter executed in act 239
(FIG. 2) in the normal manner, including execution of cus-
tomized component 1051 (in turn including execution of
customized module 1J). Execution of executable application
105 generates output 114A, 114B that is different for the
respective employees 111A, 111B of different customers A,
B, depending on their corresponding additional software
113 A, 113B which may be executed differently relative to the
same generic application software 102, depending on their
respective customizations 112A, 112B as illustrated in FIG.
1A.

Use of one or more field(s) in one or more GUI screen(s) to
receive one or more customization(s) 112 as described above
in reference to FIG. 2 is required initially, to prepare a data-
base 120 in which the following items of information are
related to one another: component name, module name, spe-
cific position in module, and identifier of additional software.
The just-described items may be stored in columns of a table
or a materialized view in a relational database, wherein each
row identifies one customization. After the customization(s)
112 are stored in database 120, they may be used repeatedly
(with or without user-specified updates thereto), to change
multiple versions of the application software.

In several embodiments, user input on customizations is
received via one or more webpage(s) generated by customi-

US 9,274,790 B2

9

zation manager 103 (FIG. 2), which is/are displayed by a
browser in computer 110 (FIG. 1) on a video monitor 1112 as
ascreen 103A (FIG. 3A). Screen 103 A includes a field 301 in
which employee 111 can identify a component, such as the
component named EMPLOYEE_PROFILE, e.g. by typing in
the name using a keyboard, or by selecting the name by using
a cursor control 1113 (such as a mouse). In an example
illustrated in FIG. 3A, displayed adjacent to field 301 is a
down-arrow icon 323 that can be operated by placing a cursor
thereon and clicking a button on the mouse, to display a
drop-down list box 301D (FIG. 3B). Drop-down list box
301D displays several components of application software
supplied by a software vendor to a customer that are available
for customization by employee 111.

In several embodiments, all components in a set of com-
ponents of the application software are displayed in drop-
down list box 301D of screen 103A, although in certain
embodiments only components in a subset (in the set of
components of the application software) that was selectively
made available by the vendor are displayed by customization
manager 103 in the drop-down list box 301D. In the just-
described certain embodiments, some components which are
not in the displayed subset but included in the set of all
components are not displayed in box 301D (i.e. hidden from
display), as being not customizable by employee 111.

The application software may be, for example, software for
an Enterprise Resource Planning (ERP) application, such as
PeopleSoft and its components can be any application pages
such as, Employee Profile 102A (FIG. 5B), Expense Reports
1021 (FIG. 5B), Journal Entries 102N (FIG. 5B) etc. When a
specific component is selected in field 301, a description of
the component is displayed by customization manager 103 in
field 320. At an initial stage, when there is no customization of
user-selected component (e.g. component EMPLOY-
EE_PROFILE identified by the user input in field 301), there
are no customizations in database 120 (FIG. 2), and hence a
form 309 is displayed in screen 103B, with blank fields 302A,
306A, etc to be used to receive user input on a customization.
For example, form 309 includes a field 302A to receive user
input identifying a module to be customized in the user-
selected component, fields 303A, 304 A, 305A to receive user
input identifying a specific position within the component
identified in field 302A, and a field 306 A to receive user input
identifying a file of additional software to be added to the
component identified in field 302A at a position identified in
one of fields 303 A, 304A or 305A.

In form 309, a magnifying-lens icon 302D is displayed
located adjacent to field 302A (FIG. 3A), operation of which
(by clicking on a mouse, with cursor on the icon) displays a
file system window (not shown) in which are displayed sev-
eral modules of the user-selected component any one of
which can be selected in the normal manner, for use in cus-
tomization by employee 111. In several embodiments, the file
system window displays a path to a directory and names of
files in the directory, in a manner similar to drop-down list box
301D, as follows. Specifically, in the several embodiments,
all modules in a set of modules of a user-selected component
1 are displayed in the file system window (not shown),
although in certain embodiments only modules in a subset (in
the set of modules of the user-selected component I) that has
been selectively made available by the vendor of the software
are displayed by customization manager 103 in the file sys-
tem window (FIG. 3B). As noted above, in the just-described
certain embodiments, some modules which are not in the
displayed subset but included in the set of all modules of

15

40

45

55

10

component I are not displayed in the file system window (i.e.
hidden from display), as being not customizable by employee
111.

Although certain illustrative features have been described
above in reference to FIG. 3A, other features may be used in
other embodiments of screen 103A. For example, other
embodiments may display in screen 103A, a down-arrow
icon 323 instead of a magnifying-lens icon 302D and vice
versa. Moreover, instead of displaying a drop-down list box in
screen 103 A, on operation of icon 302D other embodiments
may open a file system window to receive user input identi-
fying a path to a file in a directory of the file system, or
alternatively receive a uniform resource locator (URL). Simi-
larly, instead of displaying a file system window on operation
of magnifying-lens icon 302D, other embodiments may dis-
play a drop-down list box.

In an example illustrated in FIG. 3C, user input in field
302A of customization form 309A has selected “Rowlnit” as
the module to be customized. In addition, user input in cus-
tomization form 309A, by clicking the mouse with the cursor
on field 303 A, selects “Beginning” as a specific position in
the module to be customized (i.e. module Rowlnit). Instead of
“Beginning”, user input can select the specific position to be
“End” by clicking on field 304 A or select the specific position
to be “In Between” by clicking on field 305A (to be followed
by identifying a line number L in another field, as illustrated
by field 308B in customization form 309B shown in FIG. 3D).

Referring back to the example of FIG. 3C, user input in
field 306 A of customization form 309A (in a manner similar
or identical to field 302A or field 301) has selected a file
named “StartofRowlnit” as containing the additional soft-
ware to be added to the to-be-customized module (i.e. module
Rowlnit) at the specific position (i.e. Beginning) Thus, user
input in the fields 302A, 303 A, and 306A of customization
form 309 A has uniquely identified a customization 112 as the
following 4-tuple: (EMPLOYEE_PROFILE, Rowlnit,
Beginning, StartofRowlInit). At this stage, employee 111 may
provide user input in a field 311 (FIGS. 3A, 3B) to change the
status of the newly-created customization 112 from “Inac-
tive” to “Active” (FIG. 3C), which instructs customization
manager 103 to perform act 238 (described above in reference
to FIG. 2). Alternatively, as per act 236 (FIG. 2), employee
111 may provide user input for additional customizations, in
customization forms 309B and 309C (in a manner similar or
identical to form 309A), as illustrated in FIG. 3D and then
change the status for all these newly-created customizations
from “Inactive” to “Active.”

At any stage after a customization form 309A, 309B or
309C is completed, computer(s) 200 may optionally display
the source code of the respective customized module on a
video monitor 1112 in response to user input, e.g. by clicking
ona corresponding link 307A, 307B or 307C in the respective
form 309A, 309B or 309C. FIG. 3E illustrates one such
display in response to employee 111 clicking on link 307B
(FIG. 3D), wherein vendor-supplied software of module
1021J named “Rowlnit” has been customized at line 7 by
insertion of additional source code 113 from the file named
“Rowlnitatline7” to obtain the customized module 104U.

In a display of the type illustrated in screen 103E (see FIG.
3E), employee 111 may change the specific position at which
the additional software is inserted, e.g. by moving the mouse
to place the cursor on any line (which is different from line
number L identified in field 308B) and operating a mouse
button thereon, following which the corresponding customi-
zation is automatically changed by customization manager
103. For example, if employee 111 places the cursor on line 4
(shown in the left column of FIG. 3E) and clicks on a mouse

US 9,274,790 B2

11

button, the additional source code 113 is automatically
removed from line 7 and inserted between line 3 and line 4 (as
shown in FIG. 3F), and in response to employee 111 closing
this screen 103E, the field 308B is automatically updated
from line 7 in earlier-displayed screen 103D now updated to
line 4 in screen 103G (see FIG. 3G). In the screen 103F
illustrated in FIG. 3F, all newly-inserted lines of source code
of'additional software 113 are shown without line numbers in
a column in the left side of screen 103F, and the source code
of application software in module 1021J are shown with line
numbers in the just-described column.

In some embodiments, a generic version of application
software (“existing generic application software”) 102 is ini-
tially customized in an act 235 (FIG. 2) by application of
customizations received via user input as per acts 231-234
(FIG. 2), to obtain an existing customized version of applica-
tion software 106 (FIG. 4A). Subsequently, a new generic
version of application software 117 is received by com-
puter(s) 200, followed by retrieval from database 120 by
customization manager 103 of one or more previously-ap-
plied customizations that are applicable to the new generic
version. The retrieved customizations 119 are displayed and
optionally updated as per user input 118 received from
employee 111, and when the user input includes approval
they are applied by customization manager 103 to the new
generic version of application software 117 resulting in a new
customized version of application software 116 (FIG. 4A),
for example as described below in reference to FIG. 4B.

Customizations 112 and additional software 113 of most
embodiments are stored independent of and in addition to
existing customized application software 106, ¢.g. by being
stored in a database 120 and/or in a file system 130, which
may be implemented on one or more non-transitory storage
media such as a hard disk accessible to computer(s) 200.
Specifically, in several embodiments, additional software 113
of each customization is modularized and stored separately
(e.g. in database 120 as a large object or LOB, or in file system
130 as a file), which prevents the additional software 113
from being overwritten when existing customized application
software 106 is upgraded by (e.g. overwritten by) new generic
application software 112.

Hence, any customization 119 that was previously applied
to customize existing generic application software 106 is
available for application (on approval by user input, with or
without being updated by additional user input 118) on the
new generic application software 112, e.g. when the new
generic version has modules of names identical to names of
modules in the existing generic version. In several such
embodiments, customization manager 103 displays on moni-
tor 1112 any previously-applied customizations 119 that are
applicable to the new generic version of application software
117. In this manner, customization manager 103 eliminates a
need for employee 111 to manually maintain a list of cus-
tomizations.

Customizations which are displayed for user approval are
selected in some embodiments, by matching module names in
the new generic version of application software 117 to mod-
ule names identified in customizations stored in the database
120. Although module names are compared for being identi-
cal to one another in the two versions in some embodiments,
to identify applicability of existing customizations to new
generic application software 112, other embodiments enable
module names to differ across the two versions, e.g. by use of
a map that identifies for each module in the new generic
application software 112 a corresponding module in existing
generic application software 106. Hence, such a map is trans-
mitted from vendor’s computer 100 to computer(s) 200,

20

40

45

12

either internal to or external to new generic application soft-
ware 112, depending on the embodiment.

Furthermore, storage of customizations 112 in database
120 enables each of customers A and B to independently
isolate and track custom changes required only by that cus-
tomer [(wherein [=A or I=B), which helps in applying main-
tenance patches provided by software vendors, and enables
each customer I to reapply their custom changes with less
efforts and time. Moreover, when a customer [upgrades to the
new generic version of application software 102, their own
customizations are easily re-applied with minimal time and
effort. Thus, use of customization manager 103 results in
substantial savings in terms of time and effort and minimize
the total cost of ownership of application software.

Thus, after one or more customization(s) 112 (FIG. 1B) are
created and stored in database 120 as described above in
reference to act 234 in FIG. 2, the stored customization(s) are
initially applied as per act 235 (FIG. 2) to existing generic
application software 102 (FIG. 4A) and subsequently these
previously-applied customizations are re-applied to new
generic application software 117 (FIG. 4A) when com-
puter(s) 200 are programmed with a method 400, which
includes acts 401-408 (FIG. 4B). In method 400, a new ver-
sion of application software 117 is transmitted from vendor’s
computer 100 and received by computer(s) 200 in an act 401
(FIG. 4B). After receipt of the new version of application
software 117, in an act 402, customer’s computer(s) 200 use
database 120, to identify for each component received in act
401, any customizations thereof present in database 120,
based on the component names being identical (e.g. by com-
paring each component’s name in the new version of appli-
cation software 117 with each component’s name in the exist-
ing version of application software 102).

For application software in which modules are grouped
into components, computer(s) 200 loops over each compo-
nent I received in act 401, and within the loop for each
component I computer(s) 200 further loops over each module
1T received in act 401, and executes an SQL query on database
120 to identify module names that are identical to retrieve
their corresponding customizations (i.e. identify those
n-tuples in database 120 in which the name of component I is
one of the elements, and the name of module 1] is another of
the elements that respectively match a component name and
a module name in the new version of application software
117). In an example described above, computer(s) 200 iden-
tify in act 402 three customizations (see forms 309A, 309B
and 309C in FIG. 3D) for component EMPLOYEE_PRO-
FILE, and module Rowlnit. In some embodiments, on
completion of the looping described in this paragraph, com-
puter(s) 200 identify all customizations in database 120 that
identically name a module in new version of application
software 117. Only previously-applied customizations 119 in
database 120 which are applicable to new generic application
software 117 are identified in act 402 (i.e. customizations of
any modules of existing generic application software 102 in
database 120 which are not named identically as modules of
new generic application software 117, are thus not identified
in act 402).

Also, at this stage, an element in each customization iden-
tified on completion of act 402, identifies a specific position
within existing generic application software 102 (although at
this stage, not within new version of application software 117
in which the identically named module may or may not have
changed e.g. by addition of new lines and/or by deletion of
existing lines of code). Hence, in an act 403, the previously-
applied customizations retrieved from database 120 by act
402 are displayed by customization manager 103 to employee

US 9,274,790 B2

13

111. In several embodiments of act 403, computer(s) 200
prepare screens to display to employee 111 (e.g. via a browser
in computer 110), for each previously-applied customization
119, at least a name of a module and a specific position (e.g.
beginning, end, or at a line number) at which additional
software was previously inserted (to prepare an existing ver-
sion of customized module).

A specific format in which one or more previously-applied
customizations 119 (FIG. 4A) are displayed on video monitor
1112 can be different, depending on the embodiment. A sub-
set of previously-applied customizations 119 (FIG. 4A)
which are to be applied at a boundary of a module (e.g. at the
beginning of a module before the first line therein or at the end
of the module after the last line therein) are unlikely to be
updated by customer’s employee 111 regardless of whether
or not the corresponding module has been changed by
employee 101 of the software vendor, and hence in some
embodiments this subset is displayed by customization man-
ager 103 in a table of the type shown in screen 411 (FIG. 4C).
Customizations 119 which are not at module boundaries, i.e.
applicable at a line number L. between the beginning and the
end of a module, are more likely to be updated by employee
111 if the module has been changed by the vendor, and hence
in such embodiments each customization in this subset is
displayed by customization manager 103 in its own panel in
another screen 412 (FIG. 4D) which displays a list of panels.
Instead of the just-described two-screen display, certain
embodiments may display all previously-applied customiza-
tions 119 (FIG. 4A) in a single screen, similar or identical to
the above-described screen 103D (FIG. 3D).

When one or more customizations 119 (FIG. 4A) are dis-
played (as per act 403), employee 111 can change a customi-
zation, e.g. by changing a previously-specified position
which may be at a beginning of a module (e.g. see field 303A
in screen 309A) to a newly-specified position which may be
in between the beginning and the end of the module (e.g. at
line number 7, as shown in field 305B in FIG. 3D) or vice
versa. In response to any change in a customization 119
indicated by user input 118, computer(s) 200 update that
customization 119 in database 120 correspondingly. For
example, a change in a specific position at which additional
software is to be executed may be necessitated, for example,
if a new version of the module (e.g. module RowInit in FIG.
3D) contains new instructions at the beginning, in which case
employee 111 may specify that the additional software 113 is
to be executed after these new instructions (e.g. change from
beginning to in-between at a user-specified line number). As
per branch 404B (FIG. 4B), employee 111 may make any
number of changes to displayed customizations, and each
change made by user input 118 is in turn used by computer(s)
200 to update the corresponding customization in database
120 and the updated customization is used to customize the
new generic application software 117.

As noted above, customizations that were previously
applied at a boundary of a module are unlikely to be changed
and to facilitate speedy approval in such situations, screen
411 (FIG. 4C) includes a table with one row for each cus-
tomization at module boundary, in the following four col-
umns: Component column 411A, Module column 411C,
Beginning column 411D, and End column 411E. Component
column 411A displays names of components in the applica-
tion software to which at least one customization in database
120 is found to be applicable. Module column 411C displays
names of modules in the application software to which at least
one customization in database 120 is found to be applicable.
Beginning column 411D indicates by presence of a check
mark therein that additional software identified by the cus-

10

20

25

30

35

40

45

50

55

60

65

14

tomization is to be inserted at the beginning of the module
identified in the module column 411C. End column 411E
indicates by presence of a check mark therein that additional
software identified by the customization is to be inserted at
the end of the module identified in the module column 411C.

In each row of the table in screen 411, a check mark is
present in only one of the Beginning column 411D or End
column 411E, not both (in situations wherein the additional
software is to be executed at the identified module’s bound-
ary). In addition to the above-described four columns, the
table in screen 411 of some embodiments may include an
additional column, namely Preview Code column 411F, with
a hyperlink in each row clicking on which opens a screen of
the type illustrated in FIGS. 3E and 3F. In some embodiments,
application software 102 is event oriented and in such
embodiments, screen 411 includes an additional column in
the table, namely Event column 411B, in which the names of
events are displayed, whereby a module in a row is invoked by
the application software (e.g. written in PeopleCode) on
occurrence of a corresponding event identified in that row.

As shown in FIG. 4C, screen 411 displays a button 411R
labeled “Re-Apply”, operation of which causes customiza-
tion manager 103 to take branch 404A (FIG. 4B), from act
403 to act 405 in which all module boundary customizations
shown in screen 411 are applied to the new version of appli-
cation software 117. Note that operation of button 411R
labeled “Re-Apply” provides user input as an indication to
computer(s) 300 that the specific position is unchanged in the
previously-applied customization(s) which are currently dis-
played in screen 411. Hence, least for the modules identified
in the previously-applied customization(s) displayed in
screen 411, the corresponding additional software has been
approved by the user, for execution at the same respective
specific position(s) in new version of application software
117 (FIG. 4A) as in the existing version of application soft-
ware 102.

In some embodiments, just before performing act 405
(FIG. 4B), the above-described act 234A is performed, to
check if the customization(s) is/are indicated as activated
(e.g. viauser input in status field 311, shown in FIGS. 3A and
3C). Then, in act 405, in a manner similar to that noted above
for act 235, the previously-applied customizations shown in
screen 411 are now re-applied, e.g. directly by insertion of the
additional software 113 identified by each previously-applied
customization 119 (FIG. 4A), into corresponding modules of
the new generic application software 117 (or indirectly by
insertion of a function call to invoke execution of additional
software 113, as noted above).

After the (direct or indirect) insertion in act 405, in several
embodiments, customization manager 103 goes to act 403 to
display in screen 412 (FIG. 4D), one or more previously-
applied customization(s) that were identified in act 402 and
are still to be applied. For example, in act 403, one or more
previously-applied customizations 119 (FIG. 4A) which are
to be applied at a specific line number within each module are
displayed, as illustrated in screen 412 (FIG. 4D). Screen 412
of'some embodiments includes multiple panels, one panel for
each customization 119, wherein a first panel 413 displays the
following fields: Component 413A, Event 413B, Module
413C, Line Number 413D, and Preview Code 413E. As noted
above, Preview Code 413E has a hyperlink which opens a
screen of the type illustrated in FIGS. 3E and 3F.

Line Number 413D is a field that is editable by user input.
Thus, depending on whether or not application software has
changed in Module 413C, employee 111 may or may not
change field 413D, and then operate the re-apply button 413F.
User input to update field 413D may be provided directly by

US 9,274,790 B2

15

employee 111 typing a number on a keyboard, or provided
indirectly by employee 111 clicking on a mouse button in a
preview screen 103E illustrated in FIG. 3E which automati-
cally moves the previously-applied software to a new line in
screen 103F illustrated in FIG. 3F, as described above. Inde-
pendent of a specific mechanism by which the user input is
provided to update field 413D, such an update is an indication
of'a change in the specific position at which the new version
of application software 117 (FIG. 4A) is to execute the cor-
responding additional software 113. Hence, a specific posi-
tion in the existing version of application software 102 is
changed to a new specific position in the new version of
application software 117, based on the just-described indica-
tion. More specifically, operation of button 413F results in the
specific position that was previously stored in database 120
being overwritten by a new specific position identified by user
input in field 413D. Moreover, this new specific position is
thereafter used in application of the customization, specifi-
cally by inserting the additional software into the new generic
application software 117, at the new specific position.

Note that panel 413 displays a re-apply button 413F which
is individually operable to re-apply a customization as dis-
played in panel 413 independent of any other customization.
To cover situations in which there are no changes needed for
all previously-applied customizations 119, screen 412
includes a button 414 operable to re-apply all customizations
displayed in screen 412. Operation of button 414 eliminates
the need for employee 111 to operate individual re-apply
buttons 413F in each individual panel in screen 412 for each
customization. Screen 412 also includes a cancel button 415
operable to cancel all customizations displayed in screen 412.

After insertion in act 405, customization manager 103 goes
via branch 406 A (FIG. 4B) to act 407 to compile the custom-
ized modules (in a manner similar or identical to act 238
described above in reference to FIG. 2). In some embodi-
ments, the compilation in act 407 is performed in response to
the status (in field 311 in FIG. 3A) being changed from
“Inactive” to “Active” (as shown field 311 in FIG. 3C). In
some embodiments, the compilation in act 407 is performed
on a version of the application software that is applicable to a
market which is specified in field 312 (FIG. 3C). For example,
when the market is specified in field 312 to be global, then the
customizations all applied to versions of the application soft-
ware, regardless of locale. But if a market specified in field
312 is, for example, “North America” then compilation in act
407 is performed on only one version of the application
software (which is pre-configured, to be executed by employ-
ees 111 who are known to be physically located in the conti-
nent of North America). After act 407, the executable gener-
ated by act 407 is executed in act 238 in the normal manner,
thereby to execute the new version of the application software
116 customized by the customizations 119.

The act(s) illustrated in FIGS. 2 and 4B may be used to
program one or more computer(s) 200 each of which may be
implemented as illustrated in FIG. 5A and discussed below.
Thus, depending on the embodiment, computer(s) 110 used
by a customer’s employee(s), and/or computer(s) 200 used in
a cloud may be programmed to perform one or more or all of
acts 231-239, and 401-408 in whole or in part, and in any
combination with one or more hardware components
described in reference to computer(s) 200 below.

In some embodiments, computer(s) 200 includes a bus
1102 (FIG. 5A) or other communication mechanism for com-
municating information, and one or more processor(s) 1105
coupled with bus 1102 for processing information. Com-
puter(s) 200 uses (as the above-described memory) a main
memory 1106, such as a random access memory (RAM) or

10

15

20

25

30

35

40

45

50

55

60

65

16

other dynamic storage device, coupled to bus 1102 for storing
information and instructions (e.g. to perform act(s) of FIGS.
2A and 3A) to be executed by processor(s) 1105.

Main memory 1106 (FIG. 5A) also may be used for storing
temporary variables or other intermediate information during
execution of instructions (e.g. in modules 461-466) by pro-
cessor 1105. Computer(s) 200 further includes a read only
memory (ROM) 1104 or other static storage device coupled to
bus 1102 for storing static information and instructions for
processor 1105, such as software in the form of a browser. A
storage device 1110, such as a magnetic disk or optical disk,
is provided and coupled to bus 1102 for storing information
and instructions.

Computer(s) 200 (FIG. 5A) may be coupled via bus 1102 to
a display device or video monitor 1112 such as a cathode ray
tube (CRT) or a liquid crystal display (LCD), for displaying
information (e.g. via a browser) to a computer user (e.g. user
111) on the display 1112. An input device 1114, including
alphanumeric and other keys (e.g. of a keyboard), is coupled
to bus 1102 for communicating information (such as user
input, e.g. from any user 111) to processor 1105. Another type
of user input device is cursor control 1113, such as a mouse
(described above), a trackball, or cursor direction keys for
communicating information and command selections to pro-
cessor 1105 and for controlling cursor movement on display
1112. This input device typically has two degrees of freedom
intwo axes, a first axis (e.g., x) and a second axis (e.g., y), that
allows the device to specify positions in a plane. In addition to
display device 1112 on which output 114A, 114B (FIG. 1A)
may be displayed, computer(s) 200 may include a speaker
(not shown) as another output device for use by processor
1105 in interacting with any user(s) 111 (such as respective
employees 111A, 111B).

As described elsewhere herein, execution of customization
manager 103 (FIG. 4B) in computer(s) 200 (FIG. 5A) may be
implemented by one or more processor(s) 1105 executing one
or more sequences of one or more instructions that are con-
tained in main memory 1106. Such instructions may be read
into main memory 1106 from another non-transitory com-
puter-readable storage medium, such as storage device 1110.
Execution of the sequences of instructions contained in main
memory 1106 causes processor 1105 to create, store and
update customizations, and to create customized component
1041 and customized application software 106 as illustrated
in FIGS. 2 and 4B and/or to display screens as illustrated in
FIGS. 3A-3G. In alternative embodiments, hard-wired cir-
cuitry may be used in place of or in combination with soft-
ware instructions to perform act(s) illustrated in FIGS. 2 and
4B.

The term “non-transitory computer-readable storage
media” as used herein refers to any non-transitory storage
media that participate in providing instructions to processor
1105 for execution. One or more such non-transitory storage
media may take many forms, including but not limited to (1)
non-volatile storage media, and (2) volatile storage media.
Common forms of non-volatile storage media include, for
example, a floppy disk, a flexible disk, hard disk, optical disk,
magnetic disk, magnetic tape, or any other magnetic medium,
a CD-ROM, any other optical medium, punch cards, paper
tape, any other physical medium with patterns of holes, a
PROM, and EPROM, a FLASH-EPROM, any other memory
chip or cartridge that can be used as storage device 1110, to
store program code in the form of instructions and/or data
structures and that can be accessed by computer(s) 200. Vola-
tile storage media includes dynamic memory, such as main
memory 1106 which may be implemented in the form of a
random access memory or RAM.

US 9,274,790 B2

17

Instructions to processor 1105 can be provided by a trans-
mission link or by a non-transitory storage medium from
which a computer can read information, such as data and/or
code. Specifically, various forms of transmission link and/or
non-transitory storage medium may be involved in providing
one or more sequences of one or more instructions to proces-
sor 1105 for execution. For example, the instructions may
initially be comprised in a non-transitory storage device, such
as a magnetic disk, of a remote computer. The remote com-
puter can load the instructions into its dynamic memory
(RAM) and send the instructions over a telephone line using
a modem.

A modem local to computer(s) 200 (FIG. 5A) can receive
information about a change to a collaboration object on the
telephone line and use an infra-red transmitter to transmit the
information in an infra-red signal. An infra-red detector can
receive the information carried in the infra-red signal and
appropriate circuitry can place the information on bus 1102.
Bus 1102 carries the information to main memory 1106, from
which processor 1105 retrieves and executes the instructions.
The instructions received by main memory 1106 may option-
ally be stored on storage device 1110 either before or after
execution by processor 1105.

Computer(s) 200 (FIG.5A) also includes a communication
interface 1115 coupled to bus 1102. Communication inter-
face 1115 provides a two-way data communication coupling
to a network link 1120 that is connected to a local network
1122. Local network 1122 may interconnect multiple com-
puters (as described above). For example, communication
interface 1115 may be an integrated services digital network
(ISDN) card or a modem to provide a data communication
connection to a corresponding type of telephone line. As
another example, communication interface 1115 may be a
local area network (LAN) card to provide a data communi-
cation connection to a compatible LAN. Wireless links may
also be implemented. In any such implementation, commu-
nication interface 1115 sends and receives electrical, electro-
magnetic or optical signals that carry digital data streams
representing various types of information.

Network link 1120 (FIG. 5A) typically provides data com-
munication through one or more networks to other data
devices. For example, network link 1120 may provide a con-
nection through local network 1122 to a host computer 1125
or to data equipment operated by an Internet Service Provider
(ISP) 1126. ISP 1126 in turn provides data communication
services through the world wide packet data communication
network 1124 now commonly referred to as the “Internet”.
Local network 1122 and network 1124 both use electrical,
electromagnetic or optical signals that carry digital data
streams. The signals through the various networks and the
signals on network link 1120 and through communication
interface 1115, which carry the digital data to and from com-
puter(s) 200, are exemplary forms of carrier waves transport-
ing the information.

Computer(s) 200 (FIG. 5A) can send messages and receive
data, including program code, through the network(s), net-
work link 1120 and communication interface 1115. In the
Internet example, a server 1100 might transmit information
retrieved from RDBMS database through Internet 1124, ISP
1126, local network 1122 and communication interface 1115.
The instructions for performing the operations of FIG. 2 or 4B
may be executed by processor 1105 as they are received,
and/or stored in storage device 1110, or other non-volatile
storage for later execution. In this manner, computer(s) 200
may additionally or alternatively obtain instructions and any
related data.

10

15

20

25

30

35

40

45

50

55

60

65

18

FIG. 5A is a very low-level representation of many hard-
ware components of one or more of computer(s) 200
described above in reference to FIGS. 1, 2, 3A-3G, and
4A-4D. Several embodiments have one or more additional
software components in main memory 1106 as shown in FIG.
5B. In addition to main memory 1106, computer(s) 200 may
include one or more other types of memory such as flash
memory (or SD card) and/or a hard disk and/or an optical disk
(also called “secondary memory”) to store data and/or soft-
ware for loading into memory 1106 (also called “main
memory”) and/or for use by processor(s) 1105. In some
embodiments, computer(s) 200 of FIG. 5A implements a
relational database management system 1130 (FIG. 5B) to
manage data in one or more tables of a relational database 120
of the type illustrated in FIG. 5B. Such a relational database
management system may manage a distributed database sys-
tem that includes multiple databases, each table being stored
on different storage mechanisms.

In some embodiments, the multiple databases are made to
appear as a single database. In such embodiments, processor
1105 can access and modify the data in a relational database
120 via RDBMS 1130 (FIG. 5B) that accepts queries from
various modules 11-1Z (FIG. 4A) in conformance with a rela-
tional database language, the most common of which is the
Structured Query Language (SQL). The commands are used
by processor 1105 of some embodiments to store, modify and
retrieve customizations 112A, 112B (FIG. 1A) in the form of
rows in tables in relational database 120 and additional soft-
ware 113A, 113B (FIG. 1A) in the form of LOBs.

Relational database management system 1130 (FIG. 5B)
further includes output logic that makes the data in a database
table of relational database 120 available to a user via a
graphical user interface that generates a screen on a video
monitor display 1112, such as the screens illustrated in FIGS.
3A-3G and 4C-4D. In one example, the output logic of com-
puter(s) 200 provides output 114A, 114B (FIG. 1A) via a
web-based user interface that depicts in a browser of another
computer 100, information related to customizations, etc as
illustrated in any one or more of FIGS. 3A-3G, and 4C-4D.
Additionally and/or alternatively, screens responsive to user
input via a keyboard as a command in a command-line inter-
face of computer 100 and/or user input via a mouse and a
cursor displayed on a video monitor of computer 100 may be
generated by computer(s) 200.

In some embodiments of computer(s) 200, functionality in
the above-described operations or acts of FIGS. 2 and 4B is
implemented by processor 1105 (FIG. 5A) executing soft-
ware in memory 1106 of computer(s) 200, although in other
embodiments such functionality is implemented in any com-
bination of hardware circuitry and/or firmware and/or soft-
ware in computer(s) 200. Depending on the embodiment,
various functions of the type described herein may be imple-
mented in software (executed by one or more processors or
processor cores) or in dedicated hardware circuitry or in
firmware, or in any combination thereof. Accordingly,
depending on the embodiment, any one or more of the means
for performing operations or acts of FIGS. 2 and 4B can, but
need not necessarily include, one or more microprocessors,
embedded processors, controllers, application specific inte-
grated circuits (ASICs), digital signal processors (DSPs),
multi-core processors and the like, appropriately pro-
grammed with software in the form of instructions to imple-
ment one or more steps of the type described herein.

Any non-transitory computer-readable medium tangibly
embodying software (also called “computer instructions™)
may be used in implementing one or more acts or operations
described herein and illustrated in FIGS. 2 and 4B. Such

US 9,274,790 B2

19

software may include program codes stored in memory 1106
and executed by processor 1105 (FIG. 5A). Memory 1106
may be implemented within or external to processor 1105,
depending on the embodiment. When implemented in firm-
ware and/or software, logic to perform one or more acts or
operations of FIGS. 2 and 4B may be stored as one or more
computer instructions or code on a non-transitory computer-
readable medium.

In some embodiments, one or more of computer(s) 200
may include multiple processors, each of which is pro-
grammed with software in a memory 1106 shared with each
other to perform acts of the type described above to imple-
ment the individual modules I1-1Z illustrated in FIG. 4A. For
example, a first processor 1105 in computer(s) 200 may be
programmed with software in memory 1106 to implement a
receiving circuit that receives a new version of application
software from a software vendor’s computer 100. A second
processor 1105 in computer(s) 200 may be programmed with
software in memory 1106 (FIG. 5A) to implement a display-
ing circuit that displays a name of a module in the application
software and another displaying circuit that displays an indi-
cation of a specific position in the module at which additional
software was inserted to prepare a current version of a cus-
tomized module. A third processor 1105 in computer(s) 200
may be programmed with software in memory 1106 to imple-
ment a customization circuit that prepares and store a cus-
tomized version of the application software that is to execute
the additional software when executing a new version of the
module at the specific position identified by the indication. A
fourth processor 1105 in computer(s) 200 may be pro-
grammed with software in memory 1106 to implement an
execution circuit that executes at least a new executable that is
based on the new version of the customized module. The
just-described four processors 1105 are programmed to inter-
operate with one another to form a customization manager
103, which depending on the embodiment is implemented
internal to application software 102 (as illustrated in F1G. 5B)
or external to application software 102 (as illustrated in FIG.
5C), or partly internal and partly external as will be apparent
to a skilled artisan.

Although four processors 1105 (FIG. 5A) have been just
described for some embodiments to implement the respective
means, in other embodiments a single processor 1105 may be
used in a time shared manner to implement the just-described
means of the previous paragraph. Furthermore, in still other
embodiments, one processor 1105 may be used in a time-
shared manner to implement one or more parts of various
modules. Moreover, one or more processors 1105 may be
programmed to implement one or more components of appli-
cation software 102, such as Employee Profile 102A (FIG.
5B), Expense Reports 1021 (FIG. 5B), Journal Entries 102N
(FIG. 5B), in addition to customization manager 103. Fur-
thermore, although processors 1105 have been described
above for certain embodiments as being included in a single
computer(s) 200, in other embodiments multiple such pro-
cessors 1105 may be included in multiple computers 200, for
example four computers 200 may implement the operations
described above in reference to FIGS. 1, 2, 3A-3G, and
4A-4D. Additionally, in one or more such embodiments, one
or more processor(s) 1105 with a bus 1103 execute ERP
software 102 (FIG. 5B) in computer(s) 200.

Various adaptations and modifications may be made with-
out departing from the scope of the described embodiments.
Numerous modifications and adaptations of the embodiments
described herein are encompassed by the attached claims.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

The invention claimed is:

1. A method implemented by at least one computer, the
method comprising:

receiving, via a field of a first screen of a graphical user

interface, a first specific position within a first existing
module, at which additional software is to be executed,
during execution of an existing generic version of appli-
cation software that comprises a plurality of modules
including the first existing module;

wherein the first specific position is selected, by user input

in the first screen, to be at a beginning of the first existing
module, or at an end of the first existing module, or at a
specific line number in between the beginning and the
end of the first existing module;

receiving the additional software;

storing in a database, a customization that comprises a first

name of the first existing module, and the first specific
position within the first existing module;

receiving a new generic version of the application soft-

ware;

automatically identifying, in the new generic version of

application software, by use of at least one processor and
the customization in the database, a first new module
having a first name identical to the first name of the first
existing module in the existing generic version of the
application software, the first existing module being
associated with the additional software to be executed
when executing an existing customized version of the
application software;

receiving via a second screen of the graphical user inter-

face, a new specific position at which the additional
software is to be executed in the first new module when
executing a new customized version of the application
software;

automatically preparing and storing in one or more non-

transitory computer-readable storage media, the new
customized version of the application software to
execute the additional software when executing the first
new module in the new generic version of the application
software;

wherein the new customized version of the application

software is obtained, based on the new specific position,
by automatic insertion of the additional software,
directly or via a function call, into the new generic ver-
sion of the application software; and

executing a new executable based on the new customized

version of the application software.

2. The method of claim 1 further comprising:

after receipt of the new generic version and before the

executing, receiving an indication via a re-apply button
in the second screen that the new specific position is
unchanged.

3. The method of claim 1 wherein during the executing, the
additional software is executed at the new specific position in
the first new module.

4. The method of claim 1 wherein:

L is the specific line number in the first existing module

such that

1<L<T

with T being a total number of lines of source code in the
first existing module; and

the method further comprises receiving an indication of the
specific line number L.

5. The method of claim 1 wherein:

the first existing module comprises a plurality of first
instructions in source code form;

US 9,274,790 B2

21

the additional software comprises a plurality of second
instructions in source code form;

a first customized module in the existing customized ver-
sion of the application software comprises the plurality
of first instructions and the plurality of second instruc-
tions;

the method further comprises:

preparing a third screen to display the first customized
module; and

displaying the third screen, wherein the plurality of first
instructions are displayed with line numbers and the
plurality of second instructions are displayed without
line numbers.

6. The method of claim 1 wherein:

the first existing module comprises a plurality of first
instructions in source code form;

the additional software comprises a plurality of second
instructions in source code form; and

the plurality of first instructions and the plurality of second
instructions are expressed in a common high level lan-
guage.

7. The method of claim 2 wherein:

the second screen displays multiple customizations includ-
ing said customization;

the specific position in each of the multiple customizations
is at a module boundary;

the module boundary is at the beginning or the end of a
module; and

the re-apply button is common to all the multiple customi-
zations on the second screen.

8. The method of claim 2 wherein:

the second screen displays multiple customizations includ-
ing said customization;

said customization identifies the specific line number and
the re-apply button is specific to said customization; and

the second screen displays another re-apply button appli-
cable to another customization among the multiple cus-
tomizations.

9. One or more non-transitory computer-readable storage
media comprising a plurality of instructions that when
executed cause one or more processors to perform a method,
the plurality of instructions comprising:

instructions to receive, via a field of a first screen of a
graphical user interface, a first specific position within a
first existing module, at which additional software is to
be executed, during execution of an existing generic
version of application software that comprises a plural-
ity of modules including the first existing module;

wherein the first specific position is selected, by user input
in the first screen, to be at a beginning of the first existing
module, or at an end of the first existing module, or at a
specific line number in between the beginning and the
end of the first existing module;

instructions to receive the additional software;

instructions to store in a database, a customization that
comprises a first name of the first existing module, and
the first specific position within the first existing mod-
ule;

instructions to receive a new generic version of the appli-
cation software;

instructions to receive automatically identify, in the new
generic version of application software, by use of at least
one processor and the customization in the database, a
first new module having a first name identical to the first
name of the first existing module in the existing generic
version of the application software, the first existing
module being associated with the additional software to

10

15

20

25

30

35

40

45

50

55

60

65

22

be executed when executing an existing customized ver-
sion of the application software;

instructions to receive via a second screen of the graphical

user interface, a new specific position at which the addi-
tional software is to be executed in the first new module
when executing a new customized version of the appli-
cation software;

instructions to automatically prepare and store in one or

more non-transitory computer-readable storage media,
the new customized version of the application software
to execute the additional software when executing the
first new module in the new generic version of the appli-
cation software;

wherein the new customized version of the application

software is obtained, based on the new specific position,
by automatic insertion of the additional software,
directly or via a function call, into the new generic ver-
sion of the application software; and

instructions to execute a new executable based on the new

customized version of the application software.

10. The one or more non-transitory computer-readable
storage media of claim 9 wherein:

an indication is received that the new specific position is

unchanged; and

during execution of the new executable, the additional

software is executed at the new specific position in the
first new module.

11. The one or more non-transitory computer-readable
storage media of claim 9 wherein the plurality of instructions
to be executed to perform the method further comprise:

instructions to compile at least the existing customized

version of the application software to obtain an existing
executable and instructions to execute at least the exist-
ing executable, prior to receipt of the new generic ver-
sion of application software.

12. The one or more non-transitory computer-readable
storage media of claim 9 wherein:

L is the specific line number in the first existing module

such that

1<L<T

with T being a total number of lines of source code in the
first existing module; and

the method further comprises receiving an indication of the
specific line number L.

13. The one or more non-transitory computer-readable

storage media of claim 9 wherein:

the first existing module comprises a plurality of first
instructions in source code form;

the additional software comprises a plurality of second
instructions in source code form;

a first customized module in the existing customized ver-
sion of the application software comprises the plurality
of first instructions and the plurality of second instruc-
tions;

the plurality of instructions to be executed to perform the
method comprise instructions to prepare a third screen to
display the first customized module; and

the plurality of instructions to be executed to perform the
method comprise instructions to display in the third
screen, the plurality of first instructions with line num-
bers and the plurality of second instructions without line
numbers.

14. The one or more non-transitory computer-readable

storage media of claim 9 wherein:

US 9,274,790 B2

23

the new customized version of the application software is
prepared by automatically inserting the additional soft-
ware into the first existing module in the application
software.

15. The one or more non-transitory computer-readable
storage media of claim 9 further comprising:

instructions to receive an indication via a re-apply button in

the second screen that the new specific position is
unchanged.

16. The one or more non-transitory computer-readable
storage media of claim 15 wherein:

the second screen displays multiple customizations includ-

ing said customization;

the specific position in each of the multiple customizations

is at a module boundary;

the module boundary is at the beginning or the end of a

module; and

the re-apply button is common to all the multiple customi-

zations on the second screen.

17. The one or more non-transitory computer-readable
storage media of claim 15 wherein:

the second screen displays multiple customizations includ-

ing said customization;
said customization identifies the specific line number and
the re-apply button is specific to said customization; and

the second screen displays another re-apply button appli-
cable to another customization among the multiple cus-
tomizations.

18. An apparatus comprising one or more processors
coupled to one or more non-transitory computer-readable
storage media, wherein the one or more non-transitory com-
puter-readable storage media comprise a plurality of instruc-
tions that when executed cause the one or more processors to
perform a method, wherein:

the one or more processors are configured by the plurality

of instructions, to receive via a field of a first screen of a
graphical user interface, a first specific position within a
first existing module, at which additional software is to
be executed, during execution of an existing generic
version of application software that comprises a plural-
ity of modules including the first existing module;
wherein the first specific position is selected, by user input
in the first screen, to be at a beginning of the first existing
module, or at an end of the first existing module, or at a

10

15

20

25

30

35

40

24

specific line number in between the beginning and the
end of the first existing module;

the one or more processors are configured by the plurality
of instructions, to receive the additional software;

the one or more processors are configured by the plurality
of instructions, to store in a database, a customization
that comprises a first name of the first existing module,
and the first specific position within the first existing
module;

the one or more processors are configured by the plurality
of instructions, to receive a new generic version of the
application software;

the one or more processors are configured by the plurality
of instructions, to automatically identify, in the new
generic version of application software, by use of at least
one processor and the customization in the database, a
first new module having a first name identical to the first
name of the first existing module in the existing generic
version of the application software, the first existing
module being associated with the additional software to
be executed when executing an existing customized ver-
sion of the application software;

the one or more processors are configured by the plurality
of instructions, to receive via a second screen of the
graphical user interface, a new specific position at which
the additional software is to be executed in the first new
module when executing a new customized version ofthe
application software;

the one or more processors are configured by the plurality
of instructions, to automatically prepare and store in one
or more non-transitory computer-readable storage
media, the new customized version of the application
software to execute the additional software when
executing the first new module in the new generic ver-
sion of the application software:

wherein the new customized version of the application
software is obtained, based on the new specific position,
by automatic insertion of the additional software,
directly or via a function call, into the new generic ver-
sion of the application software; and

the one or more processors are configured by the plurality
of instructions, to execute a new executable based on the
new customized version of the application software.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,274,790 B2 Page 1of1
APPLICATION NO. : 14/266460

DATED :March 1, 2016

INVENTOR(S) : Marimuthu et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:
In drawings,
On sheet 1 of 15, in FIG. 1A, line 29, Delete “1°4B” and insert -- 114B --, therefor.

On sheet 2 of 15, in FIG. 1B, under Reference Numeral 112, delete “Customizat on” and
insert -- Customization --, therefor.

In specification,
In column 7, line 58, delete “1041)” and insert -- 1041J --, therefor.
In column 8, line 2, delete “1041)” and insert -- 1041J --, therefor.

In column 10, line 33, after “(i.e. Beginning)™ insert -- . --,

Signed and Sealed this
Twentieth Day of September, 2016

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

